Hire Freelance Software Engineers

Get Senior Engineers Straight To Your Inbox

Slashdev Engineers

Every month we send out our top new engineers in our network who are looking for work, be the first to get informed when top engineers become available

Slashdev Cofounders

At Slashdev, we connect top-tier software engineers with innovative companies. Our network includes the most talented developers worldwide, carefully vetted to ensure exceptional quality and reliability.

Top Software Developer 2025 - Clutch Ranking

Build Your Own ChatGPT-Style Chatbot With Python/

Michael

Michael

Michael is a software engineer and startup growth expert with 10+ years of software engineering and machine learning experience.

0 Min Read

Twitter LogoLinkedIn LogoFacebook Logo
Build Your Own ChatGPT-Style Chatbot With Python
How to Optimize Your React App with Grok 3 for Better User Experience
How to Optimize Your React App with Grok 3 for Better User Experience

Thanks For Commenting On Our Post!

We’re excited to share this comprehensive Python guide with you. This resource includes best practices, and real-world implementation strategies that we use at slashdev when building apps for clients worldwide.

What’s Inside This Guide:

  • How to link Python with OpenAI
  • How to build a simple chat interface
  • How to set your brand voice
  • How to add your own content
  • How the bot gives accurate answers
  • How to launch and test your assistant

Overview:

Creating a chatbot that works like ChatGPT can transform how your business communicates. Imagine an assistant that:
 • Answers customer questions 24/7
 • Speaks in your brand’s tone
 • Never needs a coffee break

1. Connect Python to OpenAI

The first step is connecting Python to the OpenAI API. This allows your chatbot to send messages to the AI and get instant replies. You don’t need any complex setup just a straightforward connection that handles user input and returns answers, just like ChatGPT.

2. Create a Simple Chat Interface

Your chatbot needs a way to talk with users. Create a simple interface:
 • A text box for typing messages
 • A display area for AI responses
 • A button or action to send the message

Every time someone sends a message, your Python program sends it to the AI model and displays the response immediately.

3. Teach Your Chatbot Your Brand Voice

A chatbot is much more useful if it speaks like your brand. You can feed it:
 • Your company content
 • Product descriptions
 • Frequently asked questions

This ensures your chatbot gives answers in the style and tone that represent your brand. You can even make it fun, professional, friendly, or formal – whatever fits your business.

4. Build Knowledge for Better Answers

For accurate responses, include information your chatbot can refer to:
 • Product manuals or guides
 • FAQ documents
 • Marketing materials or blog posts

By providing this knowledge, your assistant can answer more precisely and reduce mistakes or generic responses.

5. Launch Your AI Assistant

Once connected, designed, and loaded with knowledge, your chatbot is ready. It can:
 • Answer customer questions instantly
 • Recommend products or services
 • Keep engaging users without any breaks

Essentially, you’re giving your business a smart digital assistant powered entirely by AI.

6. Optional Enhancements

To make your chatbot even smarter:
 • Include multiple examples of questions and answers so the AI learns the correct style.
 • Summarize long conversations to keep context relevant.
 • Continuously update your knowledge base with new product info or FAQs.
 • Customize responses to match the personality of your brand even more closely.

Technical Guide:

Here’s a straightforward guide to creating a conversational chatbot using React on the frontend and OpenAI’s API on the backend.

Project Structure

You’ll need two parts: a React frontend and a simple backend server (to keep your API key secure).

Backend (Node.js/Express)

Create a simple Express server that proxies requests to OpenAI:

// server.js
import express from 'express';
import cors from 'cors';
import OpenAI from 'openai';

const app = express();
app.use(cors());
app.use(express.json());

const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY
});

app.post('/api/chat', async (req, res) => {
  const { messages } = req.body;
  
  try {
    const completion = await openai.chat.completions.create({
      model: 'gpt-4o',
      messages: messages,
      stream: true
    });

    res.setHeader('Content-Type', 'text/event-stream');
    
    for await (const chunk of completion) {
      const content = chunk.choices[0]?.delta?.content || '';
      if (content) {
        res.write(`data: ${JSON.stringify({ content })}\n\n`);
      }
    }
    res.write('data: [DONE]\n\n');
    res.end();
  } catch (error) {
    res.status(500).json({ error: error.message });
  }
});

app.listen(3001, () => console.log('Server running on port 3001'));

Frontend (React)

// App.jsx
import { useState, useRef, useEffect } from 'react';

export default function App() {
  const [messages, setMessages] = useState([]);
  const [input, setInput] = useState('');
  const [isLoading, setIsLoading] = useState(false);
  const messagesEndRef = useRef(null);

  useEffect(() => {
    messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' });
  }, [messages]);

  const sendMessage = async () => {
    if (!input.trim() || isLoading) return;

    const userMessage = { role: 'user', content: input };
    const newMessages = [...messages, userMessage];
    setMessages(newMessages);
    setInput('');
    setIsLoading(true);

    // Add placeholder for assistant response
    setMessages([...newMessages, { role: 'assistant', content: '' }]);

    try {
      const response = await fetch('http://localhost:3001/api/chat', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({ messages: newMessages })
      });

      const reader = response.body.getReader();
      const decoder = new TextDecoder();
      let assistantMessage = '';

      while (true) {
        const { done, value } = await reader.read();
        if (done) break;

        const chunk = decoder.decode(value);
        const lines = chunk.split('\n').filter(line => line.startsWith('data: '));

        for (const line of lines) {
          const data = line.slice(6);
          if (data === '[DONE]') continue;
          
          try {
            const parsed = JSON.parse(data);
            assistantMessage += parsed.content;
            setMessages([...newMessages, { role: 'assistant', content: assistantMessage }]);
          } catch {}
        }
      }
    } catch (error) {
      console.error('Error:', error);
    } finally {
      setIsLoading(false);
    }
  };

  return (
    <div style={{ maxWidth: 800, margin: '0 auto', height: '100vh', display: 'flex', flexDirection: 'column' }}>
      <div style={{ flex: 1, overflowY: 'auto', padding: 20 }}>
        {messages.map((msg, i) => (
          <div key={i} style={{
            marginBottom: 16,
            padding: 12,
            borderRadius: 8,
            backgroundColor: msg.role === 'user' ? '#e3f2fd' : '#f5f5f5',
            marginLeft: msg.role === 'user' ? 'auto' : 0,
            marginRight: msg.role === 'user' ? 0 : 'auto',
            maxWidth: '80%'
          }}>
            <strong>{msg.role === 'user' ? 'You' : 'Assistant'}</strong>
            <p style={{ margin: '8px 0 0', whiteSpace: 'pre-wrap' }}>{msg.content}</p>
          </div>
        ))}
        <div ref={messagesEndRef} />
      </div>
      
      <div style={{ padding: 20, borderTop: '1px solid #ddd', display: 'flex', gap: 12 }}>
        <input
          value={input}
          onChange={e => setInput(e.target.value)}
          onKeyDown={e => e.key === 'Enter' && sendMessage()}
          placeholder="Type a message..."
          style={{ flex: 1, padding: 12, borderRadius: 8, border: '1px solid #ddd' }}
        />
        <button 
          onClick={sendMessage} 
          disabled={isLoading}
          style={{ padding: '12px 24px', borderRadius: 8, backgroundColor: '#1976d2', color: 'white', border: 'none', cursor: 'pointer' }}
        >
          {isLoading ? '...' : 'Send'}
        </button>
      </div>
    </div>
  );
}

Setup Steps

  1. Backend: Run npm init -y && npm install express cors openai, set your OPENAI_API_KEY environment variable, then run node server.js
  2. Frontend: Create a React app with Vite (npm create vite@latest), paste in the App.jsx code, and run npm run dev

Key Concepts

The magic happens by maintaining the full conversation history in the messages array and sending it with each request. OpenAI’s API is stateless, so you need to include all previous messages for context. The streaming implementation gives you that real-time typing effect that ChatGPT has.

Want me to expand on any part of this, add features like markdown rendering, or help you deploy it?

About slashdev.io

At slashdev.io, we’re a global software engineering company specializing in building production web and mobile applications. We combine cutting-edge LLM technologies (Claude Code, Gemini, Grok, ChatGPT) with traditional tech stacks like ReactJS, Laravel, iOS, and Flutter to deliver exceptional results.

What sets us apart:

  • Expert developers at $50/hour
  • AI-powered development workflows for enhanced productivity
  • Full-service engineering support, not just code
  • Experience building real production applications at scale

Whether you’re building your next app or need expert developers to join your team, we provide ongoing developer relationships that go beyond one-time assessments.

Need Development Support?

Building something ambitious? We’d love to help. Our team specializes in turning ideas into production-ready applications using the latest AI-powered development techniques combined with solid engineering fundamentals.